
Operating Systems
Lecture 11

lock and condition variables
implementation

Prof. Mengwei Xu

11/12/24 Mengwei Xu @ BUPT Fall 2023 2

• To understand a concurrent program, we need to know what the underlying
indivisible operations are!
• Atomic Operation (原子操作): an operation that always runs to completion

or not at all
- It is indivisible: it cannot be stopped in the middle and state cannot be modified by

someone else in the middle
- Fundamental building block – if no atomic operations, then have no way for threads to

work together
• On most machines, memory references and assignments (i.e. loads and stores)

of words are atomic
- Consequently – weird example that produces “3” on previous slide can’t happen

• Many instructions are not atomic
- Double-precision floating point store often not atomic
- VAX and IBM 360 had an instruction to copy a whole array

Recap: Atomic Operations

11/12/24 Mengwei Xu @ BUPT Fall 2023 3

• Great thing about OS’s – analogy between problems in OS and
problems in real life
- Help you understand real life problems better
- But, computers are much stupider than people

• Example: People need to coordinate:

Motivation: “Too Much Milk”

Arrive home, put milk away3:30
Buy milk3:25
Arrive at storeArrive home, put milk away3:20
Leave for storeBuy milk3:15

Leave for store3:05
Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

11/12/24 Mengwei Xu @ BUPT Fall 2023 4

• Synchronization (同步): using atomic operations to ensure cooperation
between threads
- For now, only loads and stores are atomic
- We are going to show that its hard to build anything useful with only reads and

writes
• Mutual Exclusion (互斥): ensuring that only one thread does a particular

thing at a time
- One thread excludes the other while doing its task

• Critical Section (临界区): piece of code that only one thread can
execute at once.
- Critical section is the result of mutual exclusion
- Critical section and mutual exclusion are two ways of describing the same thing

Recap: Definitions

11/12/24 Mengwei Xu @ BUPT Fall 2023 5

• Suppose we have some sort of implementation of a lock
- lock.Acquire() – wait until lock is free, then grab
- lock.Release() – Unlock, waking up anyone waiting
- These must be atomic operations – if two threads are waiting for the lock and

both see it’s free, only one succeeds to grab the lock
• 3 formal properties

- Mutual exclusion: at most one thread holds the lock
- Progress: if no thread holds the lock and any thread attempts to acquire the lock,

then eventually some thread succeeds in acquiring the lock
- Bounded waiting: if threadT attempts to acquire a lock, then there exists a

bound on the number of times other threads can successfully acquire the lock
beforeT does
qYet, it does not promise that waiting threads acquire the lock in FIFO order.

Recap: Lock

11/12/24 Mengwei Xu @ BUPT Fall 2023 6

• Always acquire the lock at the beginning of a method and release it
right before the return
- Consistent behavior makes it easier to program
- Also makes it easier to read and debug

• A case: double-checked locking

Some Advices

Singleton* Singleton::instance() {
if (pInstance == NULL) {

lock.acquire();
if (pInstance == NULL) {

pInstance = new Instance();
}
lock.release();

}
Return pInstance;

}

Singleton* Singleton::instance() {
if (pInstance == NULL) {

pInstance = new Instance();
}
return pInstance;

}

An unsafe solution An ``optimized’’ solution.
Is it safe?

Singleton* Singleton::instance() {
lock.acquire();
if (pInstance == NULL) {

pInstance = new Instance();
}
lock.release();
return pInstance;

}

A safe solution

11/12/24 Mengwei Xu @ BUPT Fall 2023 7

A Tricky (but Real) Case

Singleton* Singleton::instance() {
if (pInstance == NULL) {

lock.acquire();
if (pInstance == NULL) {

pInstance = new Instance();
}
lock.release();

}
Return pInstance;

}

if (pInstance == NULL) { // True
lock.acquire();
if (pInstance == NULL) {
// malloc for pInstance;
// point pInstance to the memory;

 if (pInstance == NULL); // False
 return pInstance; // uninitialized!

// run new() function;
}
lock.release();

}
return pInstance;

Reordered by
compiler

ThreadA Thread B

11/12/24 Mengwei Xu @ BUPT Fall 2023 8

Where are we going with synchronization?

• We are going to implement various higher-level synchronization
primitives using atomic operations
• Everything is pretty painful if only atomic primitives are load and store
• Need to provide primitives useful at user-level

Hardware

Higher-
level
API

Programs

Load/Store Disable Ints Test&Set Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

11/12/24 Mengwei Xu @ BUPT Fall 2023 9

• Lock: prevents someone from doing something
- Lock before entering critical section and before accessing shared data
- Unlock when leaving, after accessing shared data
- Wait if locked

q Important idea: all synchronization involves waiting
q Should sleep if waiting for a long time

• Atomic Load/Store: get solution like Milk #3
- Pretty complex and error prone

• Hardware Lock instruction
- Is this a good idea?
- What about putting a task to sleep?

q How do you handle the interface between the hardware and scheduler?
- Complexity?

q Done in the Intel 432 – each feature makes HW more complex and slow

How to Implement Locks?

11/12/24 Mengwei Xu @ BUPT Fall 2023 10

How can we build multi-instruction atomic operations?
• Recall: dispatcher gets control in two ways.

- Internal: Thread does something to relinquish the CPU
- External: Interrupts cause dispatcher to take CPU

• On a uniprocessor, can avoid context-switching by:
- Avoiding internal events
- Preventing external events by disabling interrupts

Consequently, naïve Implementation of locks:
 LockAcquire { disable Ints; }

 LockRelease { enable Ints; }

Naïve use of Interrupt Enable/Disable

11/12/24 Mengwei Xu @ BUPT Fall 2023 11

Can’t let user do this! Consider following:
 LockAcquire();
While(TRUE) {;}

Real-Time system—no guarantees on timing!
• Critical Sections might be arbitrarily long
What happens with I/O or other important events?

Naïve use of Interrupt Enable/Disable: Problems

11/12/24 Mengwei Xu @ BUPT Fall 2023 12

Better Implementation of Locks
Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable
 class Lock {

int value = FREE;
Queue wait_q;

}

Lock::Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait_q;
 next = readyList.pop();
 cur_thread->state = WAITING;
 thread_switch(current, next);
 } else {
 value = BUSY;
 }
 enable interrupts;
}

Lock::Release() {
 disable interrupts;
 if (anyone on wait_q) {
 take thread off wait queue
 place on ready queue;
 } else {
 value = FREE;
 }
 enable interrupts;
}

11/12/24 Mengwei Xu @ BUPT Fall 2023 13

Better Implementation of Locks
Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable
 class Lock {

int value = FREE;
Queue wait_q;

}

Lock::Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait_q;
 next = readyList.pop();
 cur_thread->state = WAITING;
 thread_switch(current, next);
 } else {
 value = BUSY;
 }
 enable interrupts;
}

Lock::Release() {
 disable interrupts;
 if (anyone on wait_q) {
 take thread off wait queue
 place on ready queue;
 } else {
 value = FREE;
 }
 enable interrupts;
}

WHY??

11/12/24 Mengwei Xu @ BUPT Fall 2023 14

Recall: Thread Lifecycle

Init

Runnable
(ready) Running

Finished
(dead)

Waiting

thread creation
pthread_create()

Event occurs, e.g., other
threads finished

Thread waits for event
pthread_join()

Thread exits
pthread_exit()

Scheduler resumes thread

Thread yields/Scheduler
suspends thread
pthread_yield()

11/12/24 Mengwei Xu @ BUPT Fall 2023 15

• Unlike previous solution, the critical section
(inside Acquire()) is very short
- User of lock can take as long as they like in their own

critical section

Better Implementation of Locks

Lock::Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait_q;
next = readyList.pop();

 cur_thread->state = WAITING;
thread_switch(current, next);

} else {
value = BUSY;

}
enable interrupts;

}

11/12/24 Mengwei Xu @ BUPT Fall 2023 16

• Unlike previous solution, the critical section
(inside Acquire()) is very short
- User of lock can take as long as they like in their own

critical section

• Why do we need to disable interrupts at all?

Better Implementation of Locks

Lock::Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait_q;
next = readyList.pop();

 cur_thread->state = WAITING;
thread_switch(current, next);

} else {
value = BUSY;

}
enable interrupts;

}

11/12/24 Mengwei Xu @ BUPT Fall 2023 17

• Unlike previous solution, the critical section
(inside Acquire()) is very short
- User of lock can take as long as they like in their own

critical section

• Why do we need to disable interrupts at all?
- Avoid interruption between checking and setting lock value
- Otherwise two threads could think that they both have lock

Better Implementation of Locks

Lock::Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait_q;
next = readyList.pop();

 cur_thread->state = WAITING;
thread_switch(current, next);

} else {
value = BUSY;

}
enable interrupts;

}

11/12/24 Mengwei Xu @ BUPT Fall 2023 18

• Unlike previous solution, the critical section
(inside Acquire()) is very short
- User of lock can take as long as they like in their own

critical section

• Why do we need to disable interrupts at all?
- Avoid interruption between checking and setting lock value
- Otherwise two threads could think that they both have lock

• Before putting thread on the wait queue?

Better Implementation of Locks

Enable
Position

Lock::Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait_q;
next = readyList.pop();

 cur_thread->state = WAITING;
thread_switch(current, next);

} else {
value = BUSY;

}
enable interrupts;

}

11/12/24 Mengwei Xu @ BUPT Fall 2023 19

• Unlike previous solution, the critical section
(inside Acquire()) is very short
- User of lock can take as long as they like in their own

critical section

• Why do we need to disable interrupts at all?
- Avoid interruption between checking and setting lock value
- Otherwise two threads could think that they both have lock

• Before putting thread on the wait queue?
- Release can check the queue and not wake up thread

Better Implementation of Locks

Enable
Position

Lock::Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait_q;
next = readyList.pop();

 cur_thread->state = WAITING;
thread_switch(current, next);

} else {
value = BUSY;

}
enable interrupts;

}

11/12/24 Mengwei Xu @ BUPT Fall 2023 20

• Unlike previous solution, the critical section
(inside Acquire()) is very short
- User of lock can take as long as they like in their own

critical section

• Why do we need to disable interrupts at all?
- Avoid interruption between checking and setting lock value
- Otherwise two threads could think that they both have lock

• Before putting thread on the wait queue?
- Release can check the queue and not wake up thread

• After putting the thread on the wait queue

Better Implementation of Locks

Enable
Position

Lock::Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait_q;
next = readyList.pop();

 cur_thread->state = WAITING;
thread_switch(current, next);

} else {
value = BUSY;

}
enable interrupts;

}

11/12/24 Mengwei Xu @ BUPT Fall 2023 21

• Unlike previous solution, the critical section
(inside Acquire()) is very short
- User of lock can take as long as they like in their own

critical section

• Why do we need to disable interrupts at all?
- Avoid interruption between checking and setting lock value
- Otherwise two threads could think that they both have lock

• Before putting thread on the wait queue?
- Release can check the queue and not wake up thread

• After putting the thread on the wait queue
- Release puts the thread on the ready queue, but the thread

still thinks it needs to go to sleep
- Misses wakeup and still holds lock (deadlock!)
- Note: the value is BUSY now!!!

Better Implementation of Locks

Enable
Position

Lock::Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait_q;
next = readyList.pop();

 cur_thread->state = WAITING;
thread_switch(current, next);

} else {
value = BUSY;

}
enable interrupts;

}

11/12/24 Mengwei Xu @ BUPT Fall 2023 22

• In scheduler, since interrupts are disabled when you call thread_switch():
- Responsibility of the next thread to re-enable ints
- When the sleeping thread wakes up, returns to acquire and re-enables

interrupts
 Thread A Thread B
 .
 .
 disable ints
 thread_switch

 thread_switch return
 enable ints

 .
 .
 .

 disable int
 thread_switch

 thread_switch return
 enable ints
 .
 .

How to Re-enable After thread_switch()?

11/12/24 Mengwei Xu @ BUPT Fall 2023 23

• Can we extend the lock implementation to multi-processors?
- Not good idea, as disabling interrupts on all processors requires messages and

would be very time consuming
• Alternative: atomic instruction sequences

- These instructions read a value and write a new value atomically
- Hardware is responsible for implementing this correctly

q on both uniprocessors (not too hard)
q and multiprocessors (requires help from cache coherence protocol)

- Unlike disabling interrupts, can be used on both uniprocessors and
multiprocessors

Atomic Read-Modify-Write Instructions

11/12/24 Mengwei Xu @ BUPT Fall 2023 24

• test&set (&address) { /* most architectures */
 result = M[address]; /* return result from “address” and
 M[address] = 1; set value at “address” to 1 */
 return result;
}

• swap (&address, register) { /* x86 */
 temp = M[address]; /* swap register’s value to
 M[address] = register; value at “address” */
 register = temp;
}

• compare&swap (&address, reg1, reg2) { /* 68000 */
 if (reg1 == M[address]) {
 M[address] = reg2;
 return success;
 } else {
 return failure;
 }
}

Examples of Read-Modify-Write

11/12/24 Mengwei Xu @ BUPT Fall 2023 25

• Spinlock (自旋锁): another flawed, but simple solution:
 int value = 0; // Free
 Acquire() {
 while (test&set(value)); // while busy
 }

 Release() {
 value = 0;
 }

• Simple explanation:
- If lock is free, test&set reads 0 and sets value=1, so lock is now busy

It returns 0 so while exits
- If lock is busy, test&set reads 1 and sets value=1 (no change)

It returns 1, so while loop continues
- When we set value = 0, someone else can get lock

• Busy-Waiting: thread consumes cycles while waiting

Implementing Locks with test&set

11/12/24 Mengwei Xu @ BUPT Fall 2023 26

• Positives for this solution
- Machine can receive interrupts
- User code can use this lock
- Works on a multiprocessor

• Negatives
- This is very inefficient as thread will consume cycles waiting
- Waiting thread may take cycles away from thread holding lock (no one wins!)
- Priority Inversion: If busy-waiting thread has higher priority than thread holding

lock Þ no progress!
• Priority Inversion problem with original Martian rover
• For semaphores, waiting thread may wait for an arbitrary long time!

- Thus even if busy-waiting was OK for locks, definitely not ok for other primitives

Problem: Busy-Waiting for Lock

11/12/24 Mengwei Xu @ BUPT Fall 2023 27

• Can we build test&set locks without busy-waiting?
- Can’t entirely, but can minimize!
- Idea: only busy-wait to atomically check lock value

Better Locks using test&set

Release() {
 // Short busy-wait time
 while (test&set(guard));
 if anyone on wait queue {
 take thread off wait queue
 Place on ready queue;
 } else {
 value = FREE;
 }
 guard = 0;

int guard = 0;
int value = FREE;
Acquire() {
 // Short busy-wait time
 while (test&set(guard));
 if (value == BUSY) {
 put thread on wait queue;
 cur_thread->state = WAITING;
 thread_switch() & guard = 0;
 } else {
 value = BUSY;
 guard = 0;
 }
}

11/12/24 Mengwei Xu @ BUPT Fall 2023 28

• Can we build test&set locks without busy-waiting?
- Can’t entirely, but can minimize!
- Idea: only busy-wait to atomically check lock value

Better Locks using test&set

Release() {
 // Short busy-wait time
 while (test&set(guard));
 if anyone on wait queue {
 take thread off wait queue
 Place on ready queue;
 } else {
 value = FREE;
 }
 guard = 0;

int guard = 0;
int value = FREE;
Acquire() {
 // Short busy-wait time
 while (test&set(guard));
 if (value == BUSY) {
 put thread on wait queue;
 cur_thread->state = WAITING;
 thread_switch() & guard = 0;
 } else {
 value = BUSY;
 guard = 0;
 }
} Must be atomic!What if setting guard before or

after thread_switch()? How to implement?
More details in Figure 5.17 (section
5.7 “Implementing Synchronization
Objects”) of our textbook

11/12/24 Mengwei Xu @ BUPT Fall 2023 29

Locks using Interrupts vs. test&set
Compare to “disable interrupt” solution

Basically replace
• disable interrupts à while (test&set(guard));
• enable interrupts à guard = 0;

int value = FREE;

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 thread_switch();
 // Enable interrupts?
 } else {
 value = BUSY;
 }
 enable interrupts;
}

Release() {
 disable interrupts;
 if (anyone on wait queue) {
 take thread off wait queue
 Place on ready queue;
 } else {
 value = FREE;
 }
 enable interrupts;
}

11/12/24 Mengwei Xu @ BUPT Fall 2023 30

• Recap the operations:
- Wait(&lock): Atomically release lock and go to sleep. Re-acquire lock later,

before returning.
- Signal(): Wake up one waiter, if any
- Broadcast(): Wake up all waiters

while (!testOnSharedState()) {
cv.wait(&lock)

}

Implementing Condition Variables

11/12/24 Mengwei Xu @ BUPT Fall 2023 31

Synchronized Queue with Condition Variables

 Lock lock;
 Condition dataready;
 Queue queue;

 AddToQueue(item) {
 lock.Acquire(); // Get Lock
 queue.enqueue(item); // Add item
 dataready.signal(); // Signal any waiters
 lock.Release(); // Release Lock
 }

 RemoveFromQueue() {
 lock.Acquire(); // Get Lock
 while (queue.isEmpty()) {
 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item
 lock.Release(); // Release Lock
 return(item);
 }

11/12/24 Mengwei Xu @ BUPT Fall 2023 32

• Recap the operations:
- Wait(&lock): Atomically release lock and go to sleep. Re-acquire lock later,

before returning.
- Signal(): Wake up one waiter, if any
- Broadcast(): Wake up all waiters

Implementing Condition Variables

Class CV {
 Queue waiting;
 void wait(Lock *lock);
 void signal();
 void broadcast();
}

void CV::signal() {
 if (waiting.notEmpty()) {
 thread = waiting.remove();
 scheduler.makeReady(thread);
 }
}

void CV::wait(Lock *lock) {
 assert(lock.isHeld());
 waiting.add(currentTCB);
 // switch to new thread and release lock
in atomic manner
 scheduler.suspend(&lock);
 lock->acquire();
}

11/12/24 Mengwei Xu @ BUPT Fall 2023 33

• Need to be careful about precise definition of signal and wait.
Consider a piece of our dequeue code:

 while (queue.isEmpty()) {
 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item

- Why didn’t we do this?
 if (queue.isEmpty()) {
 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item

• Answer: depends on the type of scheduling (管程模型)
- Hoare-style
- Mesa-style

Mesa vs. Hoare monitors

11/12/24 Mengwei Xu @ BUPT Fall 2023 34

• Signaler keeps lock and processor
• Waiter placed on ready queue with no special priority
• Practically, need to check condition again after wait
• Most real operating systems

Mesa monitors

lock.Acquire()
…
while (queue.isEmpty()) {
 dataready.wait(&lock);
}
…
lock.Release();

…
lock.Acquire()
…
dataready.signal();
…
lock.Release();

Put waiting
thread on

ready queue

schedule waiting thread

11/12/24 Mengwei Xu @ BUPT Fall 2023 35

• Why do we use “while()” instead of “if() with Mesa monitors?
- Example illustrating what happens if we use “if()”, e.g.,

 if (queue.isEmpty()) {
 dataready.wait(&lock); // If nothing, sleep
 }

• We’ll use the synchronized (infinite) queue example

Mesa Monitor: Why “while()”?

AddToQueue(item) {
 lock.Acquire();
queue.enqueue(item);
dataready.signal();
lock.Release();

}

RemoveFromQueue() {
lock.Acquire();
if (queue.isEmpty()) {
 dataready.wait(&lock);
}
item = queue.dequeue();
lock.Release();
return(item);

}

Replace “while” with
“if”

Mesa Monitor: Why “while()”?

RemoveFromQueue() {
 lock.Acquire();
 if (queue.isEmpty()) {
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T1 (Running)

queue lock: FREE

dataready
queue

Monitor

NULL

App. Shared State CPU State

Running: T1
Ready
queue à NULL
…

Mesa Monitor: Why “while()”?

RemoveFromQueue() {
 lock.Acquire();
 if (queue.isEmpty()) {
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T1 (Running)

lock: BUSY (T1)

dataready
queue NULL

queue

MonitorApp. Shared State CPU State

Running: T1
Ready
queue à NULL
…

Mesa Monitor: Why “while()”?

RemoveFromQueue() {
 lock.Acquire();
 if (queue.isEmpty()) {
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T1 (Waiting)

lock: FREE

dataready
queue T1

queue

MonitorApp. Shared State CPU State

Running:
Ready
queue à NULL
…

wait(&lock) puts thread on
dataready queue and
releases lock

Mesa Monitor: Why “while()”?

RemoveFromQueue() {
 lock.Acquire();
 if (queue.isEmpty()) {
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T1 (Waiting)

lock: FREE

dataready
queue T1

AddToQueue(item) {
 lock.Acquire();
 queue.enqueue(item);
 dataready.signal();
 lock.Release();
}

T2 (Running)

queue

MonitorApp. Shared State CPU State

Running: T2
Ready
queue à NULL
…

Mesa Monitor: Why “while()”?

RemoveFromQueue() {
 lock.Acquire();
 if (queue.isEmpty()) {
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T1 (Waiting)
AddToQueue(item) {
 lock.Acquire();
 queue.enqueue(item);
 dataready.signal();
 lock.Release();
}

T2 (Running)

MonitorApp. Shared State CPU State

Running: T2
Ready
queue à NULL
…

queue add
item

lock: BUSY (T2)

dataready
queue T1

Mesa Monitor: Why “while()”?

RemoveFromQueue() {
 lock.Acquire();
 if (queue.isEmpty()) {
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T1 (Ready)
AddToQueue(item) {
 lock.Acquire();
 queue.enqueue(item);
 dataready.signal();
 lock.Release();
}

T2 (Running)

MonitorApp. Shared State CPU State

Running: T2
Ready
queue à T1
…

queue lock: BUSY (T2)

dataready
queue NULL

signal() wakes up T1 and
moves it on ready queue

Mesa Monitor: Why “while()”?

RemoveFromQueue() {
 lock.Acquire();
 if (queue.isEmpty()) {
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T1 (Ready)
AddToQueue(item) {
 lock.Acquire();
 queue.enqueue(item);
 dataready.signal();
 lock.Release();
}

T2 (Running)

MonitorApp. Shared State CPU State

Running: T2
Ready
queue à T1, T3
…

queue lock: BUSY (T2)

dataready
queue NULL

RemoveFromQueue() {
 lock.Acquire();
 if (queue.isEmpty()) {
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T3 (Ready)

Mesa Monitor: Why “while()”?

RemoveFromQueue() {
 lock.Acquire();
 if (queue.isEmpty()) {
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T1 (Ready)
AddToQueue(item) {
 lock.Acquire();
 queue.enqueue(item);
 dataready.signal();
 lock.Release();
}

T2 (Terminate)

MonitorApp. Shared State CPU State

Running:
Ready
queue à T1, T3
…

queue lock: FREE

dataready
queue NULL

RemoveFromQueue() {
 lock.Acquire();
 if (queue.isEmpty()) {
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T3 (Ready)

Mesa Monitor: Why “while()”?

RemoveFromQueue() {
 lock.Acquire();
 if (queue.isEmpty()) {
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T1 (Ready)

MonitorApp. Shared State CPU State

Running: T3
Ready
queue à T1
…

queue lock: FREE

dataready
queue NULL

RemoveFromQueue() {
 lock.Acquire();
 if (queue.isEmpty()) {
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T3 (Running)

T3 scheduled first!

Mesa Monitor: Why “while()”?

RemoveFromQueue() {
 lock.Acquire();
 if (queue.isEmpty()) {
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T1 (Ready)

MonitorApp. Shared State CPU State

Running: T3
Ready
queue à T1
…

queue lock: BUSY (T3)

dataready
queue NULL

RemoveFromQueue() {
 lock.Acquire();
 if (queue.isEmpty()) {
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T3 (Running)

Mesa Monitor: Why “while()”?

RemoveFromQueue() {
 lock.Acquire();
 if (queue.isEmpty()) {
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T1 (Ready)

MonitorApp. Shared State CPU State

Running: T3
Ready
queue à T1
…

queue lock: BUSY (T3)

dataready
queue NULL

RemoveFromQueue() {
 lock.Acquire();
 if (queue.isEmpty()) {
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T3 (Running)

remove
item

Mesa Monitor: Why “while()”?

RemoveFromQueue() {
 lock.Acquire();
 if (queue.isEmpty()) {
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T1 (Ready)

MonitorApp. Shared State CPU State

Running:
Ready
queue à T1
…

queue lock: FREE

dataready
queue NULL

RemoveFromQueue() {
 lock.Acquire();
 if (queue.isEmpty()) {
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T3 (Finished)

Mesa Monitor: Why “while()”?

RemoveFromQueue() {
 lock.Acquire();
 if (queue.isEmpty()) {
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T1 (Running)

MonitorApp. Shared State CPU State

Running: T1
Ready
queue à NULL
…

queue lock: BUSY (T1)

dataready
queue NULL

Mesa Monitor: Why “while()”?

RemoveFromQueue() {
 lock.Acquire();
 if (queue.isEmpty()) {
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T1 (Running)

MonitorApp. Shared State CPU State

Running: T1
Ready
queue à NULL
…

queue lock: BUSY (T1)

dataready
queue NULL

ERROR:
Nothing in the
queue!

Mesa Monitor: Why “while()”?

RemoveFromQueue() {
 lock.Acquire();
 while (queue.isEmpty())
{
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T1 (Running)

MonitorApp. Shared State CPU State

Running: T1
Ready
queue à NULL
…

queue lock: BUSY (T1)

dataready
queue NULL

Replace
“if” with
“while”

Mesa Monitor: Why “while()”?

RemoveFromQueue() {
 lock.Acquire();
 while (queue.isEmpty())
{
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T1 (Ready)

MonitorApp. Shared State CPU State

Running: T1
Ready
queue à NULL
…

queue lock: BUSY (T1)

dataready
queue NULL

Check
again if
empty!

Mesa Monitor: Why “while()”?

RemoveFromQueue() {
 lock.Acquire();
 while (queue.isEmpty())
{
 dataready.wait(&lock);
 }
 item = queue.dequeue();
 lock.Release();
 return(item);
}

T1 (Waiting)

MonitorApp. Shared State CPU State

Running: T1
Ready
queue à NULL
…

queue lock: FREE

dataready
queue T1

11/12/24 Mengwei Xu @ BUPT Fall 2023 53

• Signaler gives up lock, CPU to waiter; waiter runs immediately
• Waiter gives up lock, processor back to signaler when it exits critical

section or if it waits again
• Most textbooks

Hoare monitors

lock.Acquire()
…
if (queue.isEmpty()) {
 dataready.wait(&lock);
}
…
lock.Release();

…
lock.Acquire()
…
dataready.signal();
…
lock.Release();

Lock, CPU
Lock, CPU

11/12/24 Mengwei Xu @ BUPT Fall 2023 54

• Do lock.Acquire() and lock.Release() always trap into kernel?

• Interrupt handlers must use spinlocks instead of queueing locks.Why?
- Note: interrupt handlers are not supposed to sleep

Quick Questions

11/12/24 Mengwei Xu @ BUPT Fall 2023 55

• Search for how Java synchronization works.
- Key words:“synchronized”,“wait”,“notify”,“notifyAll”.
- Is it based on Hoare or Mesa model?

• Implement semaphores with test&set in pseudo code.

Homework

